GMM kernel by Taylor series for speaker verification
نویسندگان
چکیده
Currently, approach of Gaussian Mixture Model combined with Support Vector Machine to text-independent speaker verification task has produced the stat-of-the-art performance. Many kernels have been reported for combining GMM and SVM. In this paper, we propose a novel kernel to represent the GMM distribution by Taylor expansion theorem and it’s regarded as the input of SVM. The utterance-specific GMM is represented as a combination of orders of Taylor series expansing at the the means of the Gaussian components. Here we extract the distribution information around the means of the Gaussian components in the GMM as we can naturally assume that each mean position indicates a feature cluster in the feature space. And then the kernel computes the emsemble distance between orders of Taylor series. Results of our new kernel on NIST speaker recognition evaluation (SRE) 2006 core task have been shown relative improvements of up to 7.1% and 11.7% in EER for male and female compared to K-L divergence based SVM system.
منابع مشابه
Linear and non linear kernel GMM supervector machines for speaker verification
This paper presents a comparison between Support Vector Machines (SVM) speaker verification systems based on linear and non linear kernels defined in GMM supervector space. We describe how these kernel functions are related and we show how the nuisance attribute projection (NAP) technique can be used with both of these kernels to deal with the session variability problem. We demonstrate the imp...
متن کاملAddressing the Data-Imbalance Problem in Kernel-Based Speaker Verification via Utterance Partitioning and Speaker Comparison
GMM-SVM has become a promising approach to textindependent speaker verification. However, a problematic issue of this approach is the extremely serious imbalance between the numbers of speaker-class and impostor-class utterances available for training the speaker-dependent SVMs. This data-imbalance problem can be addressed by (1) creating more speaker-class supervectors for SVM training through...
متن کاملThe combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملThe Combined Reproducing Kernel Method and Taylor Series for Handling Fractional Differential Equations
This paper presents the numerical solution for a class of fractional differential equations. The fractional derivatives are described in the Caputo cite{1} sense. We developed a reproducing kernel method (RKM) to solve fractional differential equations in reproducing kernel Hilbert space. This method cannot be used directly to solve these equations, so an equivalent transformation is made by u...
متن کاملKernel combination for SVM speaker verification
We present a new approach to construct kernels used on support vector machines for speaker verification. The idea is to learn new kernels by taking linear combination of many kernels such as the Generalized Linear Discriminant Sequence kernels (GLDS) and Gaussian Mixture Models (GMM) supervector kernels. In this new linear kernel combination, the weights are speaker dependent rather than univer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009